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Abstract—This study investigates the application of different
Long Short-Term Memory (LSTM) architectures for hour-
ahead load forecasting to support flexibility management in
local energy communities. Four architectures are analyzed:
Multi-layer LSTM, Unidirectional LSTM, Autoencoder LSTM,
and Bidirectional LSTM. The dataset comprises hourly load
measurements collected from 2018 to 2021 for a suburb in
Poland, with a maximum observed load of 1.68 MW. Forecast
performance is evaluated using Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Bias Error
(MBE). Results show that all models provide closely comparable
performance, with RMSE values ranging from 0.031 MW to
0.034 MW, corresponding to approximately 1.89% to 2.06% of
the maximum load. The Unidirectional LSTM achieved the best
results, exhibiting the lowest RMSE (0.031 MW) and minimal
bias. Forecasts remained accurate across different seasons,
effectively capturing daily load dynamics and peak periods. The
findings emphasize that simpler LSTM architectures can deliver
highly competitive and computationally efficient forecasting
performance, making them well-suited for real-world flexibility
management applications in energy communities.

Keywords — Hour ahead forecasting, Load prediction, LSTM
architectures, Energy communities, Flexibility management, Deep
learning

I. INTRODUCTION

The integration of renewable energy resources into
modern power systems necessitates accurate and reliable
forecasting methods to ensure grid stability, effective demand-
side management, and optimal exploitation of energy
flexibility. In particular, hour-ahead load forecasting is crucial
for Distribution System Operators (DSOs) and energy
communities to anticipate load variations, manage generation
dispatch efficiently, and participate effectively in energy
markets [1].

Deep learning techniques, particularly Long Short-Term
Memory (LSTM) networks, have emerged as powerful tools
for short-term load forecasting tasks [2]. Due to their inherent
ability to capture temporal dependencies and handle
sequential data, LSTM models have shown superior
performance compared to traditional statistical forecasting
specific application within real-time operational settings such
methods.
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Previous research has extensively validated LSTM
architectures for various forecasting horizons; however, their
as energy community flexibility management still offers
opportunities for exploration and improvement.

In the context of the FlexBIT project, which seeks to exploit
energy flexibility at residential, tertiary, and industrial scales,
this study aims to implement and validate an hour-ahead
deterministic load forecasting method using a Multi-

Layer LSTM model. Accurate forecasts generated by this
method will directly support other functionalities such as
demand response management, microgrid optimization, and
enhanced operational decision-making within the energy
community. This contributes significantly towards the overall
project objective of creating a robust digital platform for
energy and flexibility exchange. The rest of the paper is
organized as follows. Section Il provides a literature review of
relevant recent research on the topic of load forecasting using
LSTM based models, Section III briefly describes the models
that are used in the study, Section IV presents data and the
preprocessing methods used, Section V presents the
evaluation metrics and Section VI presents the results which
is then followed by conclusions in Section VII.

II. LITERATURE REVIEW

In this section, recent studies employing LSTM-based
models for load forecasting are systematically reviewed. The
papers are selected based on their relevance, novelty, and
methodological advancements.

In [3] is proposed a novel approach integrating quantile
regression with dual attention mechanisms into LSTM
networks for hour-ahead short-term load forecasting. This
model was validated using data from Panama City and the
Islamabad Electric Supply Company (IESCO). The results
showed significant performance improvements, achieving
reductions in mean absolute percentage error (MAPE) by
2.35% and 5.36% respectively, compared to other baseline
models, demonstrating robustness in managing grid stability
and economic dispatch efficiency. An optimized LSTM
framework explicitly designed for dynamic electricity pricing
within smart grid demand response schemes is introduced in
[4]. Their model systematically tuned hyperparameters,
significantly enhancing forecast accuracy. The day-ahead
dynamic electricity pricing was successfully applied, enabling
efficient scheduling of price-dependent loads and electric
vehicle charging, achieving a Root Mean Square Error
(RMSE) of 0.4454 and an R? value of 0.9677, highlighting the
applicability of hyperparameter-tuned LSTM models in smart
grids. In [5] was developed a hybrid deep learning model
combining Variational Mode Decomposition (VMD), mutual
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information-based feature selection, and LSTM neural
networks to predict building electrical consumption patterns.
The performance evaluation, using data from a two-story
residential building in Houston, Texas, demonstrated superior
forecasting accuracy with an average RMSE of 0.1192
compared to other benchmark models like the generalized
regression neural network (GRNN) and adaptive neuro-fuzzy
inference system (ANFIS). A clustering fractional-order grey
model (C-FGM) combined with LSTM and Transformer
models for short-term electrical load forecasting is presented
in [6]. Their method utilized fractional-order partial
differential equations to describe load data behavior
effectively. Simulations on datasets from the Australian
Energy Market Operator (AEMO) revealed superior
predictive performance, achieving a lower MAPE ranging
from 197% to 4.67%, significantly outperforming
conventional LSTM (average MAPE of 4.34%) and
Transformer models (average MAPE of 5.42%).

While the above-mentioned studies highlight innovative
techniques combining LSTM with attention mechanisms,
hyperparameter tuning, and hybridization with other deep
learning architectures, in this work we specifically focus on
comparing four classical LSTM architectures for hour-ahead
load forecasting. The considered architectures are: (i) Simple
LSTM, (ii) Multi-layer LSTM, (iii) Bidirectional LSTM
(BILSTM), and (iv) LSTM Autoencoder. By systematically
evaluating and comparing these LSTM variants on a unified
dataset, we aim to provide a clear understanding of their
relative strengths and weaknesses in practical load forecasting
applications.

III. LSTM ARCHITECTURES FOR LOAD FORECASTING

A. Unidirectional LSTM model

The unidirectional LSTM model is the simplest model
available that is quick to train and is efficient. It has been
described under several names such as the LSTM
Unidirectional model and the LSTM basic model. As shown
in Fig. 1 it has an input layer, an output layer, a single dense
layer, and an LSTM layer consisting of a number of LSTM
cells defined by the user.
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Fig. 1. Unidirectional LSTM model

The input layer is a specialized layer in all LSTM models
that requires the input data to be shaped in a 3D formal
consisting of samples, number of timesteps and features. The
output layer provides the forecast, the single dense layer and
the LSTM layer are responsible for ascertaining the long- and
short-term dependencies present within the data required to

produce a forecast. This model is prevalent in the literature for
time series forecasting tasks [7], [8].

B. LSTM Autoencoder model

The LSTM Autoencoder model as shown in Fig. 4 has one
input layer, one output layer, two LSTM layers called the
encoder and decoder respectively and finally a repeat vector.
The encoding layer of the model is responsible for creating a
vector from the input data which contains the long- and short-
term dependencies present in the data [9]. This vector is of a
reduced dimension compared to the input data and can be used
in tandem with other machine learning models. This encoded
vector is then passed on to the decoder using the repeat vector
layer where the input vector is recreated. The effectiveness of
the model depends on the accuracy of the recreation of the
input data by the decoder [10].
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Fig. 2. LSTM Autoencoder model

C. BIiLSTM model

The BiLSTM model as shown in Fig. 5 has an input layer,
output layer, a single dense layer and a Bi — Directional LSTM
layer called the BiLSTM layer. This model is able to capture
the temporal relationship in the data by processing sequences
in both forward and reverse directions. In essence, when a
series of inputs is presented to the model, it comprehensively
analyzes the connections between preceding and subsequent
elements. This dual-directional approach enables the BILSTM
to integrate insights from both earlier and later points in the
sequence. It has been successfully used for the purposes of
time series forecasting as shown in [11].
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Fig. 3. BiLSTM model

D. Multi-Layer LSTM model

This model, also called the multi-layer LSTM layer model
or the deep LSTM model, has a structure similar to the
unidirectional model but has an additional LSTM layer. It
consists of the input layer, the output layer, the dense layer and
2 LSTM layers. This structure of back-to-back LSTM layers
allows for a deeper and more complex representation of
sequential data. In this case the output of one LSTM layer
becomes the input for the next, enabling the network to learn
at various levels of abstraction. The first layer is responsible
for capturing basic patterns, while the second layer can
interpret more complex structures in the data. This
hierarchical learning approach is effective in handling
sequences with long-range dependencies. While it is more
effective compared to the unidirectional model in extracting
temporal relationships, it also has higher training times and
consumes more computational power.



IV. DATA AND PREPROCESSING METHODS

A. Data description

The load demand data utilized in this study pertains to a
local energy community located in a suburb in Poland. The
dataset has only hourly load demand values from 01.01.2018
00:00 to 31.12.2021 23:00. The peak load demand value
observed in the dataset is 1.68 MW. It is visualized in the
figure below.
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Fig. 4. Load demand dataset

B. Data preprocessing

This research uses a range of features with differing scales,
distributions, and measurement units. To enhance the
robustness of the LSTM networks against variations in the
input data and to mitigate issues associated with large weight
values, normalization of these features is required. For this
purpose, a min-max normalization technique, as shown in
equation (1). Here, the variable value at every time step is

represented by z;, max(z) and min (z) are maximum and
minimum values of that variable respectively.

z; —min (z)/ max(z) — min(z) )

The normalization ensures that each input variable
contributes approximately proportionately to the final model.
This scaling not only helps in speeding up the training process
but also improves the ability of the model to learn from the
data more effectively.

Algorithm 1 Sliding Window Algorithm

1: Input: Total time series length L, window length W
2: Output: Array of sliding windows S

3: Initialize t = 0 for the current position in the time series, and
w_count = 0 for the count of windows

4: Prepare an empty list S to hold the segments
5: while t + W <=L do

e  Ensure: The end of the time series is not surpassed
e  Segment the time series from position t to t + W and
append to S
e Update t by adding W to move to the next segment
e Increment w_count
6: end while

7: return S
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Fig. 5. Forecasting model performances on selected days

The LSTM models need the input data to be in a 3D format
consisting of the total number of samples, total number of
timesteps and number of features. To achieve this, the sliding
window technique as outlined in algorithm 1 is used. This
method rearranges the input into a format compatible with the

Power (MW)

00:00  03:00  06:00  09:00  12:00  15:00  18:00  21:00
Aug 27, 2019

Time (h)

Power (MW)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Jan 4, 2020

Time (h)

Multi-Layer LSTM — Unidirectional LSTM — BiLSTM

LSTM model. Without employing the sliding window
method, the LSTM model would encounter issues due to
incompatible input data shape, leading to errors in model
processing. This technique ensures that the data is
appropriately segmented and sequenced, matching the



LSTM's requirements for effective learning and prediction
accuracy.

V. EVALUATION METRICS

In this study, the best performing LSTM architecture for
hour ahead point load forecasts is identified through the use of
the following metrics: The RMSE, the Mean Absolute Error
(MAE) and the Mean Bias Error (MBE). The RMSE was
chosen because it provides a clear measure of the model's
performance in terms of the magnitude of its prediction errors.
This metric is particularly sensitive to large errors and is
beneficial when they are particularly undesirable, and the
square root ensures that the units of RMSE are consistent with
the units of the forecast variable [12]. The MAE was chosen
because it provides the average error and is a linear score,
which means that all individual errors are weighted equally in
the average unlike the RMSE. The MBE provides information
regarding the average bias in the forecasts [13]. This refers to
the general tendency of the forecasting model to under or over
predict. The metrics are calculated according to (6) — (9).
Where, at every time step i the forecast error e; is calculated
from the true value Yj(gcruqry and the forecast value
Yi(forecast)> based on this error other metrics are calculated
where N represents the total number of time steps.

MAE = 1/N * ¥V, |e] (6)

RMSE = MSE = \J1/N =¥\ e? (7

MBE = 1/N*¥N . ¢ (3

e = Yi(forecast) — Yi(actual) )
VI. RESULTS

The forecasting results for all four LSTM architectures,
Multi-layer LSTM, Unidirectional LSTM, Autoencoder
LSTM, and Bidirectional LSTM presented in Table 1 are
generally comparable, with only slight differences in their
performance metrics.

TABLE I. EVALUATION METRICS
Performance of investigated LSTM
Architecture architectures
RMSEMW) MAEMW) MBEMW)
Multi-layer 0.032 0.025 0.001
LSTM
Unidirection 0.031 0.024 0.001
al LSTM
Autoencoder 0.034 0.026 0.001
LSTM
Bidirectional 0.034 0.027 0.012
LSTM

The RMSE and MAE values are relatively close for each
model, indicating consistent predictive behavior with low
variability in individual forecast errors. For the Multi-layer
LSTM, the RMSE is 0.03237 MW, corresponding to
approximately 1.93% of the maximum load demand. The
Unidirectional LSTM achieves the lowest RMSE at 0.03174
MW, about 1.89% of the maximum load, demonstrating the
best overall forecasting accuracy. The Autoencoder LSTM
records an RMSE of 0.03437 MW, which is around 2.05% of
the maximum load, while the Bidirectional LSTM exhibits an

RMSE of 0.03461 MW, equivalent to roughly 2.06% of the
maximum load. Regarding bias, all models show low MBE
values, indicating minimal systematic over- or under-
prediction tendencies. Notably, the Unidirectional LSTM and
Multi-layer LSTM present the lowest MBE values, while the
Bidirectional LSTM shows a slightly higher positive bias.
Overall, the results suggest that all architectures provide
reliable hour-ahead forecasts, with the Unidirectional LSTM
slightly outperforming others in terms of accuracy and bias.

Fig. 5 presents the point forecast performance of the four
LSTM architectures compared to the actual load demand
(dashed blue line) across four different days selected from
various seasons. The dates analyzed are May 29, 2019 (late
spring), August 27, 2019 (summer), November 5, 2019
(autumn), and January 4, 2020 (winter). This selection
captures the variability in load behavior associated with
different times of the year. On May 29, 2019 (top-left panel),
corresponding to late spring, all models accurately track the
daytime rise and evening peak, although minor deviations are
visible during the midday hours where sharp load increases
occur. The forecasts are tightly clustered, showing strong
model agreement even during periods of load fluctuation.

On August 27, 2019 (top-right panel), during the peak
summer season, higher load variability is observed due to
cooling demands. Here, the models maintain good alignment
with the actual values, although slight overprediction is visible
during the late afternoon and early evening, especially for the
Bidirectional LSTM, consistent with its higher positive bias.
On November 5, 2019 (bottom-left panel), representing
autumn conditions, the load profile shows smoother
transitions with less pronounced peaks. The models
demonstrate acceptable tracking of the load curve throughout
the day, with minimal spread between the predictions and
actual observations. All architectures perform similarly well
under these milder load variations. Finally, on January 4, 2020
(bottom-right panel), during the winter period, the load profile
is characterized by sharp morning and evening peaks likely
driven by heating demands. All models successfully capture
the morning ramp-up and evening surge, although slight
underestimations are visible around the peak periods. The
Bidirectional LSTM again shows a tendency to slightly
overshoot during high load periods, while the Autoencoder
LSTM tends to slightly underpredict. Across all selected days
and seasons, the forecasted curves remain consistently close
to the actual load, with no significant systematic errors or
major divergences observed. This reinforces the finding that
all tested LSTM architectures are capable of reliably capturing
short-term load dynamics throughout different times of the
year.

VII. CONCLUSIONS

This paper presented an evaluation of four LSTM
architectures—Multi-layer LSTM, Unidirectional LSTM,
Autoencoder LSTM, and Bidirectional LSTM—for hour-
ahead load forecasting in a rural energy community context.
The forecasting results demonstrate that all architectures
provide comparable and reliable predictive performance, with
minor variations in accuracy and bias. Notably, the
Unidirectional LSTM achieved the lowest RMSE and MAE,
highlighting that simpler architectures can often deliver
superior results while maintaining low computational
complexity. Across different seasons and load profiles, the
models consistently tracked the actual demand. The analysis
confirms that even basic LSTM configurations are sufficient
for effective short-term forecasting required for flexibility
management. These insights are valuable for future



implementation of Al-based forecasting tools within energy
communities where computational efficiency and forecasting
reliability are both critical.
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