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Abstract—This study investigates the application of different 
Long Short-Term Memory (LSTM) architectures for hour-
ahead load forecasting to support flexibility management in 
local energy communities. Four architectures are analyzed: 
Multi-layer LSTM, Unidirectional LSTM, Autoencoder LSTM, 
and Bidirectional LSTM. The dataset comprises hourly load 
measurements collected from 2018 to 2021 for a suburb in 
Poland, with a maximum observed load of 1.68 MW. Forecast 
performance is evaluated using Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and Mean Bias Error 
(MBE). Results show that all models provide closely comparable 
performance, with RMSE values ranging from 0.031 MW to 
0.034 MW, corresponding to approximately 1.89% to 2.06% of 
the maximum load. The Unidirectional LSTM achieved the best 
results, exhibiting the lowest RMSE (0.031 MW) and minimal 
bias. Forecasts remained accurate across different seasons, 
effectively capturing daily load dynamics and peak periods. The 
findings emphasize that simpler LSTM architectures can deliver 
highly competitive and computationally efficient forecasting 
performance, making them well-suited for real-world flexibility 
management applications in energy communities. 

Keywords — Hour ahead forecasting, Load prediction, LSTM 
architectures, Energy communities, Flexibility management, Deep 
learning 

I. INTRODUCTION 

The integration of renewable energy resources into 
modern power systems necessitates accurate and reliable 
forecasting methods to ensure grid stability, effective demand-
side management, and optimal exploitation of energy 
flexibility. In particular, hour-ahead load forecasting is crucial 
for Distribution System Operators (DSOs) and energy 
communities to anticipate load variations, manage generation 
dispatch efficiently, and participate effectively in energy 
markets [1]. 

Deep learning techniques, particularly Long Short-Term 
Memory (LSTM) networks, have emerged as powerful tools 
for short-term load forecasting tasks [2]. Due to their inherent 
ability to capture temporal dependencies and handle 
sequential data, LSTM models have shown superior 
performance compared to traditional statistical forecasting 
specific application within real-time operational settings such 
methods. 

This research was funded by CETPartnership, the Clean Energy 
Transition Partnership under the 2023 joint call for research proposals, co-
funded by the European Commission (GA N°101069750) and with the 
funding organizations detailed on https://cetpartnership.eu/funding-agencies-
and-call-modules. 

 Previous research has extensively validated LSTM 
architectures for various forecasting horizons; however, their 
as energy community flexibility management still offers 
opportunities for exploration and improvement. 

In the context of the FlexBIT project, which seeks to exploit 
energy flexibility at residential, tertiary, and industrial scales, 
this study aims to implement and validate an hour-ahead 
deterministic load forecasting method using a Multi- 

Layer LSTM model. Accurate forecasts generated by this 
method will directly support other functionalities such as 
demand response management, microgrid optimization, and 
enhanced operational decision-making within the energy 
community. This contributes significantly towards the overall 
project objective of creating a robust digital platform for 
energy and flexibility exchange. The rest of the paper is 
organized as follows. Section II provides a literature review of 
relevant recent research on the topic of load forecasting using 
LSTM based models, Section III briefly describes the models 
that are used in the study, Section IV presents data and the 
preprocessing methods used, Section V presents the 
evaluation metrics and Section VI presents the results which 
is then followed by  conclusions in Section VII.  

II. LITERATURE REVIEW 

In this section, recent studies employing LSTM-based 
models for load forecasting are systematically reviewed. The 
papers are selected based on their relevance, novelty, and 
methodological advancements. 

In [3] is proposed a novel approach integrating quantile 
regression with dual attention mechanisms into LSTM 
networks for hour-ahead short-term load forecasting. This 
model was validated using data from Panama City and the 
Islamabad Electric Supply Company (IESCO). The results 
showed significant performance improvements, achieving 
reductions in mean absolute percentage error (MAPE) by 
2.35% and 5.36% respectively, compared to other baseline 
models, demonstrating robustness in managing grid stability 
and economic dispatch efficiency. An optimized LSTM 
framework explicitly designed for dynamic electricity pricing 
within smart grid demand response schemes is introduced in 
[4]. Their model systematically tuned hyperparameters, 
significantly enhancing forecast accuracy. The day-ahead 
dynamic electricity pricing was successfully applied, enabling 
efficient scheduling of price-dependent loads and electric 
vehicle charging, achieving a Root Mean Square Error 
(RMSE) of 0.4454 and an R² value of 0.9677, highlighting the 
applicability of hyperparameter-tuned LSTM models in smart 
grids. In [5] was developed a hybrid deep learning model 
combining Variational Mode Decomposition (VMD), mutual 
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information-based feature selection, and LSTM neural 
networks to predict building electrical consumption patterns. 
The performance evaluation, using data from a two-story 
residential building in Houston, Texas, demonstrated superior 
forecasting accuracy with an average RMSE of 0.1192 
compared to other benchmark models like the generalized 
regression neural network (GRNN) and adaptive neuro-fuzzy 
inference system (ANFIS). A clustering fractional-order grey 
model (C-FGM) combined with LSTM and Transformer 
models for short-term electrical load forecasting is presented 
in [6]. Their method utilized fractional-order partial 
differential equations to describe load data behavior 
effectively. Simulations on datasets from the Australian 
Energy Market Operator (AEMO) revealed superior 
predictive performance, achieving a lower MAPE ranging 
from 1.97% to 4.67%, significantly outperforming 
conventional LSTM (average MAPE of 4.34%) and 
Transformer models (average MAPE of 5.42%).  

While the above-mentioned studies highlight innovative 
techniques combining LSTM with attention mechanisms, 
hyperparameter tuning, and hybridization with other deep 
learning architectures, in this work we specifically focus on 
comparing four classical LSTM architectures for hour-ahead 
load forecasting. The considered architectures are: (i) Simple 
LSTM, (ii) Multi-layer LSTM, (iii) Bidirectional LSTM 
(BiLSTM), and (iv) LSTM Autoencoder. By systematically 
evaluating and comparing these LSTM variants on a unified 
dataset, we aim to provide a clear understanding of their 
relative strengths and weaknesses in practical load forecasting 
applications. 

 

III. LSTM ARCHITECTURES FOR LOAD FORECASTING 

A. Unidirectional LSTM model  

The unidirectional LSTM model is the simplest model 
available that is quick to train and is efficient. It has been 
described under several names such as the LSTM 
Unidirectional  model and the LSTM basic model. As shown 
in Fig. 1 it has an input layer, an output layer, a single dense 
layer, and an LSTM layer consisting of a number of LSTM 
cells defined by the user.  

 

 

Fig. 1. Unidirectional LSTM model  

The input layer is a specialized layer in all LSTM models 
that requires the input data to be shaped in a 3D formal 
consisting of samples, number of timesteps and features. The 
output layer provides the forecast, the single dense layer and 
the LSTM layer are responsible for ascertaining the long- and 
short-term dependencies present within the data required to 

produce a forecast. This model is prevalent in the literature for 
time series forecasting tasks [7], [8]. 

B. LSTM Autoencoder model  

The LSTM Autoencoder model as shown in Fig. 4 has one 
input layer, one output layer, two LSTM layers called the 
encoder and decoder respectively and finally a repeat vector. 
The encoding layer of the model is responsible for creating a 
vector from the input data which contains the long- and short-
term dependencies present in the data [9]. This vector is of a 
reduced dimension compared to the input data and can be used 
in tandem with other machine learning models. This encoded 
vector is then passed on to the decoder using the repeat vector 
layer where the input vector is recreated. The effectiveness of 
the model depends on the accuracy of the recreation of the 
input data by the decoder [10]. 

 

 

Fig. 2. LSTM Autoencoder model 

C.  BiLSTM model 

The BiLSTM model as shown in Fig. 5 has an input layer, 
output layer, a single dense layer and a Bi – Directional LSTM 
layer called the BiLSTM layer. This model is able to capture 
the temporal relationship in the data by processing sequences 
in both forward and reverse directions. In essence, when a 
series of inputs is presented to the model, it comprehensively 
analyzes the connections between preceding and subsequent 
elements. This dual-directional approach enables the BiLSTM 
to integrate insights from both earlier and later points in the 
sequence. It has been successfully used for the purposes of 
time series forecasting as shown in [11]. 

 

Fig. 3. BiLSTM model  

D. Multi-Layer LSTM model 

This model, also called the multi-layer LSTM layer model 
or the deep LSTM model, has a structure similar to the 
unidirectional model but has an additional LSTM layer. It 
consists of the input layer, the output layer, the dense layer and 
2 LSTM layers. This structure of back-to-back LSTM layers 
allows for a deeper and more complex representation of 
sequential data. In this case the output of one LSTM layer 
becomes the input for the next, enabling the network to learn 
at various levels of abstraction. The first layer is responsible 
for capturing basic patterns, while the second layer can 
interpret more complex structures in the data. This 
hierarchical learning approach is effective in handling 
sequences with long-range dependencies. While it is more 
effective compared to the unidirectional model in extracting 
temporal relationships, it also has higher training times and 
consumes more computational power.  



IV. DATA AND PREPROCESSING METHODS 

A. Data description  

The load demand data utilized in this study pertains to a 
local energy community located in a suburb  in Poland. The 
dataset has only hourly load demand values from 01.01.2018 
00:00 to 31.12.2021 23:00. The peak load demand value 
observed in the dataset is 1.68 MW. It is visualized in the 
figure below.  

 

Fig. 4. Load demand dataset  

B. Data preprocessing 

This research uses a range of features with differing scales, 
distributions, and measurement units. To enhance the 
robustness of the LSTM networks against variations in the 
input data and to mitigate issues associated with large weight 
values, normalization of these features is required. For this 
purpose, a min-max normalization technique, as shown in 
equation (1). Here, the variable value at every time step is 

represented by 𝑧𝑖 , 𝑚𝑎𝑥(𝑧)  and 𝑚𝑖𝑛 (𝑧)  are maximum and 
minimum values of that variable respectively.  

𝑧𝑖 − min (𝑧)/ max(𝑧) − min(𝑧)                  (1) 

The normalization ensures that each input variable 
contributes approximately proportionately to the final model. 
This scaling not only helps in speeding up the training process 
but also improves the ability of the model to learn from the 
data more effectively. 

Algorithm 1 Sliding Window Algorithm 

1: Input: Total time series length L, window length W 

2: Output: Array of sliding windows S 

3: Initialize t = 0 for the current position in the time series, and    
w_count = 0 for the count of windows 

4: Prepare an empty list S to hold the segments 

5: while t + W <= L do 

• Ensure: The end of the time series is not surpassed 

• Segment the time series from position t to t + W and 
append to S 

• Update t by adding W to move to the next segment 

• Increment w_count 
6: end while 

7: return S 
 

 

 

 

Fig. 5. Forecasting model performances on selected days  

The LSTM models need the input data to be in a 3D format 
consisting of the total number of samples, total number of 
timesteps and number of features. To achieve this, the sliding 
window technique as outlined in algorithm 1 is used. This 
method rearranges the input into a format compatible with the 

LSTM model. Without employing the sliding window 
method, the LSTM model would encounter issues due to 
incompatible input data shape, leading to errors in model 
processing. This technique ensures that the data is 
appropriately segmented and sequenced, matching the 



LSTM's requirements for effective learning and prediction 
accuracy. 

 

V. EVALUATION METRICS  

In this study, the best performing LSTM architecture for 
hour ahead point load forecasts is identified through the use of 
the following metrics: The RMSE, the Mean Absolute Error 
(MAE) and the Mean Bias Error (MBE).   The RMSE was 
chosen because it provides a clear measure of the model's 
performance in terms of the magnitude of its prediction errors. 
This metric is particularly sensitive to large errors and is 
beneficial when they are particularly undesirable, and the 
square root ensures that the units of RMSE are consistent with 
the units of the forecast variable [12].  The MAE was chosen 
because it provides the average error and is a linear score, 
which means that all individual errors are weighted equally in 
the average unlike the RMSE. The MBE provides information 
regarding the average bias in the forecasts [13]. This refers to 
the general tendency of the forecasting model to under or over 
predict. The metrics are calculated according to (6) – (9). 
Where, at every time step 𝑖 the forecast error 𝑒𝑖 is calculated 
from the true value 𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)  and the forecast value 

𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡), based on this error other metrics are calculated 

where N represents the total number of time steps.  

 

   𝑀𝐴𝐸 =  1/𝑁 ∗ ∑ |𝑒𝑖|𝑁
𝑖=1                          (6) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √1/𝑁 ∗ ∑ 𝑒 𝑖
2𝑁

𝑖=1               (7) 

𝑀𝐵𝐸 =  1/𝑁 ∗ ∑ 𝑒𝑖
𝑁
𝑖=1                              (8) 

  𝑒𝑖  =  𝑦𝑖(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡)  − 𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)                           (9) 

VI. RESULTS  

The forecasting results for all four LSTM architectures, 
Multi-layer LSTM, Unidirectional LSTM, Autoencoder 
LSTM, and Bidirectional LSTM presented in Table 1 are 
generally comparable, with only slight differences in their 
performance metrics.  

TABLE I.  EVALUATION METRICS  

Architecture  

Performance of investigated LSTM 
architectures  

RMSE(MW) MAE(MW) MBE(MW) 

Multi-layer 
LSTM 

0.032 0.025 0.001 

Unidirection
al LSTM 

0.031 0.024 0.001 

Autoencoder 
LSTM 

0.034 0.026 0.001 

Bidirectional 
LSTM 

0.034 0.027 0.012 

 
The RMSE and MAE values are relatively close for each 
model, indicating consistent predictive behavior with low 
variability in individual forecast errors. For the Multi-layer 
LSTM, the RMSE is 0.03237 MW, corresponding to 
approximately 1.93% of the maximum load demand. The 
Unidirectional  LSTM achieves the lowest RMSE at 0.03174 
MW, about 1.89% of the maximum load, demonstrating the 
best overall forecasting accuracy. The Autoencoder LSTM 
records an RMSE of 0.03437 MW, which is around 2.05% of 
the maximum load, while the Bidirectional LSTM exhibits an 

RMSE of 0.03461 MW, equivalent to roughly 2.06% of the 
maximum load. Regarding bias, all models show low MBE 
values, indicating minimal systematic over- or under-
prediction tendencies. Notably, the Unidirectional  LSTM and 
Multi-layer LSTM present the lowest MBE values, while the 
Bidirectional LSTM shows a slightly higher positive bias. 
Overall, the results suggest that all architectures provide 
reliable hour-ahead forecasts, with the Unidirectional  LSTM 
slightly outperforming others in terms of accuracy and bias.  

Fig. 5 presents the point forecast performance of the four 
LSTM architectures compared to the actual load demand 
(dashed blue line) across four different days selected from 
various seasons. The dates analyzed are May 29, 2019 (late 
spring), August 27, 2019 (summer), November 5, 2019 
(autumn), and January 4, 2020 (winter). This selection 
captures the variability in load behavior associated with 
different times of the year. On May 29, 2019 (top-left panel), 
corresponding to late spring, all models accurately track the 
daytime rise and evening peak, although minor deviations are 
visible during the midday hours where sharp load increases 
occur. The forecasts are tightly clustered, showing strong 
model agreement even during periods of load fluctuation. 

On August 27, 2019 (top-right panel), during the peak 
summer season, higher load variability is observed due to 
cooling demands. Here, the models maintain good alignment 
with the actual values, although slight overprediction is visible 
during the late afternoon and early evening, especially for the 
Bidirectional LSTM, consistent with its higher positive bias. 
On November 5, 2019 (bottom-left panel), representing 
autumn conditions, the load profile shows smoother 
transitions with less pronounced peaks. The models 
demonstrate acceptable tracking of the load curve throughout 
the day, with minimal spread between the predictions and 
actual observations. All architectures perform similarly well 
under these milder load variations. Finally, on January 4, 2020 
(bottom-right panel), during the winter period, the load profile 
is characterized by sharp morning and evening peaks likely 
driven by heating demands. All models successfully capture 
the morning ramp-up and evening surge, although slight 
underestimations are visible around the peak periods. The 
Bidirectional LSTM again shows a tendency to slightly 
overshoot during high load periods, while the Autoencoder 
LSTM tends to slightly underpredict. Across all selected days 
and seasons, the forecasted curves remain consistently close 
to the actual load, with no significant systematic errors or 
major divergences observed. This reinforces the finding that 
all tested LSTM architectures are capable of reliably capturing 
short-term load dynamics throughout different times of the 
year.  

VII. CONCLUSIONS  

This paper presented an evaluation of four LSTM 
architectures—Multi-layer LSTM, Unidirectional LSTM, 
Autoencoder LSTM, and Bidirectional LSTM—for hour-
ahead load forecasting in a rural energy community context. 
The forecasting results demonstrate that all architectures 
provide comparable and reliable predictive performance, with 
minor variations in accuracy and bias. Notably, the 
Unidirectional LSTM achieved the lowest RMSE and MAE, 
highlighting that simpler architectures can often deliver 
superior results while maintaining low computational 
complexity. Across different seasons and load profiles, the 
models consistently tracked the actual demand. The analysis 
confirms that even basic LSTM configurations are sufficient 
for effective short-term forecasting required for flexibility 
management. These insights are valuable for future 



implementation of AI-based forecasting tools within energy 
communities where computational efficiency and forecasting 
reliability are both critical.  
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