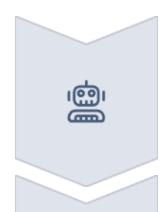


Hour-Ahead Load Forecasting for Flexibility Management in Energy Communities #169

Content



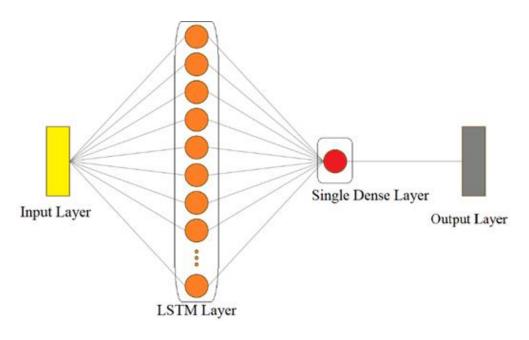
LSTM Model Architectures

Data + Preprocessing

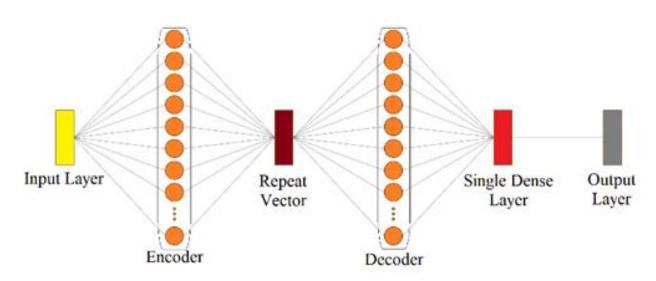
Results

LSTM Model Architectures

Unidirectional Model

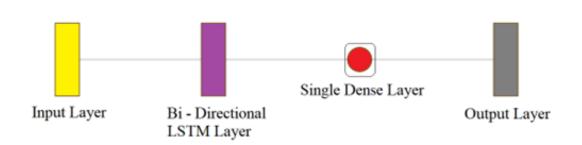


Autoencoder Model Model

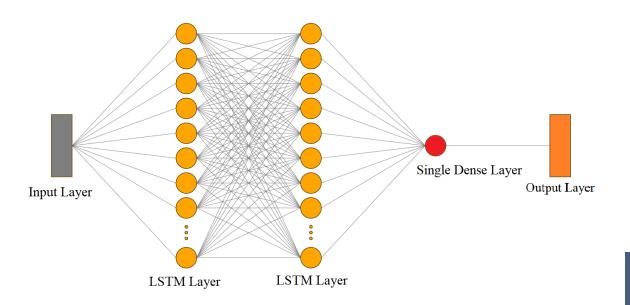


LSTM Model Architectures

BiLSTM Model



Multi-layer Model

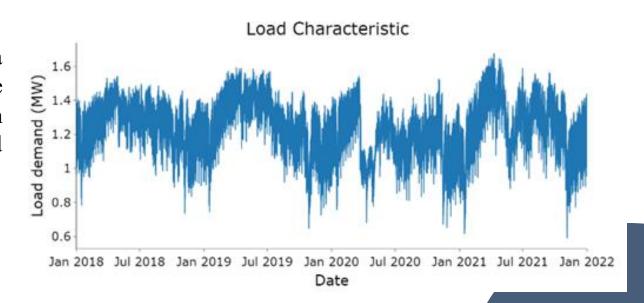


Data Description + Processing

Data description

The load demand data utilized in this study pertains to a local energy community located in a suburb in Poland. The dataset has only hourly load demand values from 01.01.2018 00:00 to 31.12.2021 23:00. The peak load demand value observed in the dataset is 1.68 MW

Load Characteristic



Normalization

$$z_i - \min(z) / \max(z) - \min(z)$$

Sliding Window

Algorithm 1 Sliding Window Algorithm

- 1: Input: Total time series length L, window length W
- Output: Array of sliding windows S
- 3: Initialize t = 0 for the current position in the time series, and w_count = 0 for the count of windows
 - 4: Prepare an empty list S to hold the segments
 - 5: while $\mathbf{t} + \mathbf{W} \leq \mathbf{L} \, \mathbf{do}$
 - Ensure: The end of the time series is not surpassed
 - Segment the time series from position t to t + W and append to S
 - Update t by adding W to move to the next segment
 - Increment w count

6: end while

7: return S

Results

Normalization

$$\begin{aligned} \mathit{MAE} &= 1/N * \sum_{i=1}^{N} |e_i| \\ \mathit{RMSE} &= \sqrt{\mathit{MSE}} = \sqrt{1/N * \sum_{i=1}^{N} e_i^2} \\ \mathit{MBE} &= 1/N * \sum_{i=1}^{N} e_i \\ e_i &= y_{i(forecast)} - y_{i(actual)} \end{aligned}$$

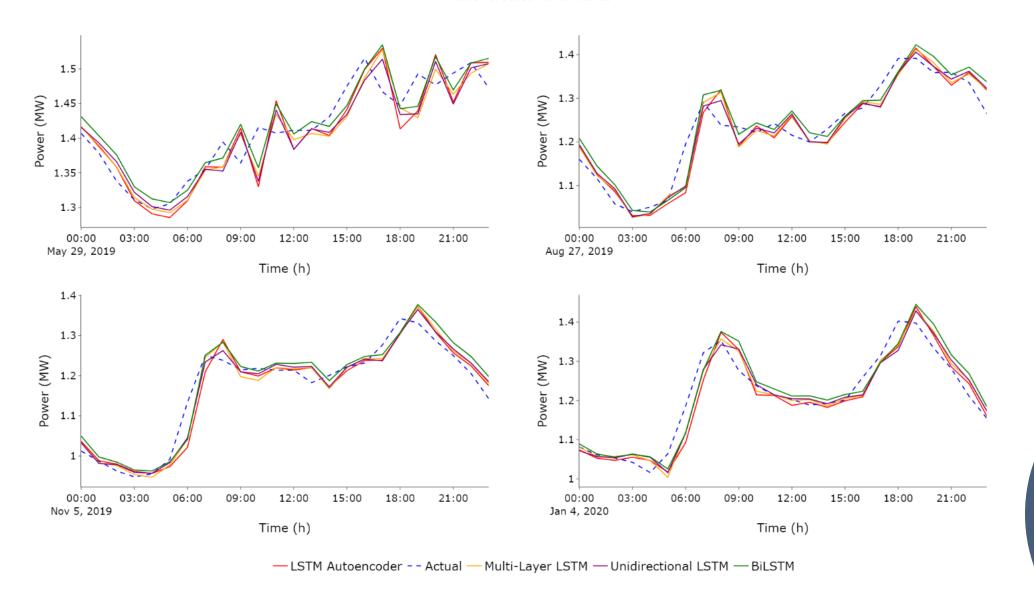
Evaluation Metrics

TABLE I. EVALUATION METRICS

Architecture	Performance of architectures	investigate	d LSTM
	RMSE(MW)	MAE(MW)	MBE(MW)
Multi-layer LSTM	0.032	0.025	0.001
Unidirection al LSTM	0.031	0.024	0.001
Autoencoder LSTM	0.034	0.026	0.001
Bidirectional LSTM	0.034	0.027	0.012

Results

Point Forecast Performance



THANK YOU

This research was funded by CETPartnership, the Clean Energy Transition Partnership under the 2023 joint call for research proposals, co-funded by the European Commission (GA N° 101069750) and with the funding organizations detailed on https://cetpartnership.eu/funding-agencies-and-call-modules.