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Abstract—The transition toward intelligent and sustainable
port operations requires advanced tools to manage the
complexity of maritime microgrids. These systems must enable
real-time coordination between hybrid vessels and port-side
infrastructure while adapting to variable renewable generation,
uncertain berthing schedules, and mission-critical loads. This
paper presents a focused review of digital twin (DT) technologies
as a foundation for data-driven predictive control, diagnostics,
and energy optimization in maritime environments. Key
architectural elements are analyzed, including multi-source
sensing, data modeling, forecasting, and secure communication.
Representative DT applications such as cold ironing scheduling,
DER coordination, propulsion monitoring, and AIS-based
demand prediction are discussed. A unified framework is
proposed to illustrate how a centralized Energy Management
System (EMS) integrates port and shipboard DTs, enabling
dynamic interaction, load forecasting, and synchronized
control. The paper also identifies major challenges and research
directions to support scalable, secure, and low-emission digital
twin deployments for resilient port electrification.

Keywords—Digital Twin, Energy Management System,
Maritime  Microgrids,  Port  Electrification,  Ship—Port
Coordination.

I. INTRODUCTION

Decarbonization of maritime infrastructure has become a
strategic priority in global efforts to reduce greenhouse gas
emissions from the transportation sector. With increasing
regulatory mandates and sustainability targets set by the
International Maritime Organization (IMO) and European
Union, ports are transitioning toward low-emission and fully
electrified operational models [1]. One of the most promising
enablers of this transformation is the maritime microgrid, an
autonomous energy system that integrates renewable
generation, energy storage, and smart control infrastructure
for port-side and ship-side operations, transitioning ports to
energy hubs [2]. Several studies have shown that microgrids
embedded with photovoltaic (PV) panels, battery energy
storage systems (BESS), and cold ironing stations can reduce
emissions by up to 40% in medium-scale ports while
improving operational flexibility [3].

Despite these benefits, the effective management of
maritime microgrids remains technically challenging. Port
environments are inherently dynamic and are characterized by
variable berthing schedules, irregular load profiles, uncertain
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renewable outputs, and mobile energy demands from hybrid
or electric vessels. These conditions result in high variability
in the load behavior and often lead to mismatches between
energy supply and demand. In particular, mission-critical
systems such as quay cranes, reefer containers, propulsion
drives, and cold ironing terminals require uninterrupted
power, involving precise coordination across ship—port
interfaces. The existing Supervisory Control and Data
Acquisition (SCADA) and Energy Management Systems
(EMYS) in ports are typically rule-based and with predefined
responses, which limit their ability to model uncertainty,
anticipate failures, or optimize dispatch under fast-changing
conditions. As a result, renewable generation assets are often
underutilized, and load prioritization becomes reactive rather
than predictive [4],[5].

Digital twins (DTs) offer a compelling solution to these
limitations. A DT is not merely a static model, but its a
dynamic, continuously updated, representation of a physical
asset or system that enables real-time monitoring, simulation,
and optimization. Originally conceived for aerospace systems
to monitor and simulate mission-critical components in real
time [6], DTs have since gained adoption in power systems
[7],industrial automation [8] and transportation sectors due to
their ability to synchronize virtual models with physical
systems. For instance, in power systems, DTs have been
successfully used for transformer health diagnostics,
distributed energy resources (DER) scheduling under
uncertainty, and grid topology identification and monitoring
[91,[10]. As demonstrated in [11], a machine learning-
enhanced digital twin was used to forecast building-level
demand in a campus microgrid, showing robust performance
under volatile load conditions. In [12], a physics-informed
digital twin was developed to model battery degradation,
supporting predictive dispatch strategies aimed at improving
reliability and extending asset lifespan.

Nevertheless, the application of DTs in maritime
microgrids remains unexplored. Although prior studies have
utilized Automatic Identification System (AIS) data to model
ship-to-shore energy interactions and forecast berthing
schedules [13], most lack integration with real-time control
mechanisms, multi-scenario simulation environments, and
closed-loop feedback architectures essential for coordinated
energy dispatch in maritime microgrids.

The authors in [14] have developed co-simulation
platforms integrating ship propulsion models with port-side
energy systems, while Micallef et al. [15] developed a
framework for forecasting electricity demand in cruise port
microgrids using advanced machine learning models.
However, these approaches often lack validation using real-
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Fig. 1 Conceptual overview of a digital twin in a maritime microgrid.

time data streams or fail to incorporate synchronization
mechanisms necessary for dynamic maritime operations.
Unlike stationary terrestrial microgrids, maritime systems
require DTs capable of adaptive modeling that responds to
both spatial and temporal variability, particularly when
coordinating distributed energy resources with shipboard
systems.

Moreover, while some progress has been made in
developing DT architectures, an integrated framework that
synchronizes shipboard and port-side DTs within a real-time
EMS remains underexplored. Existing modular DT platforms
designed for electric vehicle infrastructure or isolated
microgrids have shown promising results [16], yet their
application to maritime systems is constrained by operational
diverse  operations, intermittent connectivity, and
cybersecurity risks. As seaports evolve into multi-functional
energy hubs catering to both stationary infrastructure and
mobile assets, the ability to simulate, coordinate, and control
hybrid systems in real time is increasingly recognized as a
critical enabler for enhancing resilience and reducing
emissions.

To address these gaps, this paper provides a targeted
review and conceptual framework for the deployment of
digital twins in maritime microgrids.

The remainder of this paper is organized as follows.
Section II introduces the digital twin architecture for maritime
microgrids, detailing port-side, shipboard, and logistics DT

domains along with the communication and cybersecurity
layer. Section III presents a layered data flow hierarchy that
supports predictive modeling, control, and cyber-physical
coordination. Section IV outlines the unified maritime DT
framework centered around the EMS, enabling real-time ship—
port synchronization and optimization. Section V discusses
key technical challenges, including sensors’ reliability,
cybersecurity, and computational scalability. Section VI
concludes the paper by summarizing insights and highlighting
future research directions for secure, interoperable, and
scalable DT deployment in maritime microgrids.

II. MARITIME TWIN ARCHITECTURE

DT architectures play a transformative role in maritime
microgrids by enabling synchronized high-resolution virtual
models of complex physical systems. These architectures
support continuous simulations, forecasting, and adaptive
control under various operational and environmental
conditions. Unlike conventional SCADA-based systems, DTs
facilitate data-driven coordination of DERs, hybrid propulsion
systems, and critical port loads, such as cranes, reefer
containers, and cold ironing stations [17].

A. Digital Twin Architecture for Maritime Microgrids

Fig. 1 presents a modular architecture for maritime
microgrids centered around a centralized EMS, which
integrates interoperable DT domains: port-side DT, shipboard



DT, and logistics DT. These domains are digitally coupled to
enable synchronized control, real-time diagnostics, and
predictive optimization of energy flows between the port
infrastructure and docked vessels.

Port-side DT focuses on static infrastructure within the
harbour, capturing DERs through a dedicated energy network
DT. This subdomain monitors the PV generation, battery
energy storage systems (BESS), cold ironing systems, and
grid interfaces. Real-time and historical data such as
irradiance levels, battery state-of-charge (SoC), grid voltage
fluctuations, and DER availability are utilized for renewable
forecasting, DER optimization, load scheduling, and
contingency-based scenario simulations.

The shipboard DT models onboard systems, including
hybrid propulsion modules, energy storage units, and
auxiliary electrical loads. It integrates vessel/fleet telematics,
combining onboard diagnostics such as propulsion torque,
SoC, fuel consumption, and exhaust temperature to support
predictive maintenance, dynamic power allocation, and
coordinated onshore power supply (OPS). Diagnostic outputs
such as the estimated remaining battery life and real-time
power profiles are relayed to the EMS for optimal resource
dispatch during the berthing, loitering, and departure phases.

The logistics DT serves as a coordination layer between
vessel traffic, terminal operations, and energy dispatch. This
is divided into two operational sub-domains. The cargo
terminal DT manages cargo throughput monitoring, berth
allocation, turnaround scheduling, reefer container tracking,
and onshore power-sharing. The cruise terminal DT captures
the dynamics of passenger-centric activities, including
occupancy forecasting, embarkation/disembarkation
scheduling, terminal power demand estimation, and lighting
loads. These models are essential for managing intermittent
but high-intensity demand from cruise vessels, which differs
significantly from freight ship operations.

All DTs communicate through a communication and
cybersecurity layer, which ensures secure and standardized
real-time data exchange across physical and digital domains.
Lightweight telemetry data from distributed sensors (e.g.,
temperature readings from PV panels or occupancy levels at
terminals) are transmitted using MQTT [18], while critical
grid control signals are exchanged through the IEC 61850
protocol. Embedded cybersecurity mechanisms such as
encryption [19], authentication, and gateway isolation are
implemented to protect against spoofing, intrusion, and
unauthorized command injection, which are critical in
maritime operational contexts.

This integrated framework connects the physical port
infrastructure and physical ship infrastructure, which serve as
the source of real-world telemetry and execution endpoints for
EMS-issued commands. Examples of physical telemetry
include the hybrid tugboat engine RPM, BESS voltage levels,
cold ironing load transfer, and occupancy sensor data. The
EMS uses these data to issue control commands, such as
initiating battery charging, adjusting the PV inverter output,
or redistributing the berth power allocation, thereby enabling
a closed-loop control strategy.

Through this hierarchical, multidomain architecture, the
EMS synthesizes digital forecasts, operational priorities, and
real-time system states to coordinate load balancing, and
energy resilience across the entire maritime microgrid. This
configuration supports both cargo and cruise operations and
lays the foundation for decarbonized intelligent port
ecosystems.

B. Data Flow Hierarchy for Maritime Microgrid Digital
Twins

Fig. 2 illustrates a five-layer DT architecture that governs
data flow and operational synchronization within a maritime
microgrid environment [20]. This structure facilitates
predictive modeling, supervisory control, and cyber-physical
coordination across both the port infrastructure and shipboard
energy systems. The vertical alignment of the layers, from
physical assets to user-facing applications, ensures continuous
feedback loops for real-time decision-making. Each layer
processes or routes data, generating outputs that flow upwards
for analysis and downward for control. The hybrid tugboat,
considered as a representative asset, helps ground this
architecture, as it functions as both a generator and consumer
of energy, interacting with the port’s microgrid to request
power (via the OPS) or providing telemetry to forecast
propulsion needs. Its participation exemplifies how physical
devices are digitized and managed within this DT-based
control framework.

1) Physical Layer

The physical layer comprises all tangible maritime assets
that generate, store, or consume energy within the port
ecosystem. These include hybrid tugboats, BESS, PV arrays,
wind turbines, cold ironing terminals, and grid interface
hardware, and other marine vessels, etc. Each system is
equipped with sensors that measure real-time parameters, such
as battery SoC, propulsion torque, fuel flow, voltage levels,
PV irradiance, wind speed, and shore-side power loads. For
instance, a hybrid tugboat batteries system may report SoC
values as it approaches the port, enabling the system to prepare
a cold ironing berth with an adequate DER supply. These raw
sensor data streams are routed into the data infrastructure for
preprocessing and interpretation.

2) Data Layer

Sensor telemetry is first transmitted to the data layer,
where the raw values are filtered, synchronized, and integrated
with historical and simulated datasets. This layer performs
essential preprocessing, such as timestamp alignment, noise
filtering, and normalization. The resulting fusion dataset
supports both short- and long-term degradation analyses. For
example, the battery temperature profiles from the tugboat can
be merged with the historical discharge curves and ambient
temperature readings to infer potential thermal aging.
Preprocessed outputs such as normalized voltage datasets or
aggregated load demands are passed to the model layer for
high-level forecasting and diagnostic analytics.

3) Model Layer

The model layer forms the core analytical engine of the
digital twin framework. It comprises three subcomponents:
physical models, data-driven system models, and a decision
model. Physical models replicate deterministic behavior, such
as the DC-DC converter efficiency or cold ironing cable
losses. System models include machine learning approaches
to forecast terminal energy consumption based on AIS
schedules and weather inputs, as well as Kalman filters for
real-time SoC estimation in shipboard batteries using
measured voltage and current data [21].

The decision model uses the outputs from these analytical
engines to generate optimized schedules, battery management
strategies, and DER prioritization plans. For instance, based
on the predicted DER availability and ship demand, the model
might determine whether the tugboat should be connected
immediately or delayed until the PV output increases.
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Fig. 2 Layered data flow architecture for the maritime microgrid digital twin.

4) Service Layer

The service layer operationalizes insights from the model
layer into specific system actions. This includes automated
power dispatch, cold ironing activation, battery charge
scheduling, and fault response strategies. For instance, if the
model layer forecasts a potential SoC drop during a tugboat’s
approach, the service layer can initiate prioritised battery
charging using renewable sources such as wind or solar
power, or shedding of nonessential terminal loads. Risk
metrics, emissions thresholds, and grid balancing objectives
are also processed to enable dynamic system adjustment.
These services maintain bidirectional links with the
application layer (for operator feedback) and model layer (for
continuous optimization based on the live system response).

5) Application Layer

At the top of the architecture, the application layer
provides the human-machine interface and external system
coordination functions. This includes EMS dashboards,
SCADA portals, and analytics panels displaying the system
KPIs, forecasts, etc. Operators interact with live energy flow
maps, historical efficiency curves, and predictive maintenance
alerts, and may issue direct commands such as initiate tugboat
charging, reduce BESS discharge, or allocate cold ironing
power for cruise terminal. The application layer also links
stakeholders such as national grid control centers and port
logistics systems by transmitting forecasted DER output, berth
schedules, or energy flexibility bids. These interactions close
the loop, with top-down commands flowing through the

service and model layers to reconfigure operations at the
physical level.

III. MARITIME DIGITAL TWIN FRAMEWORK

The maritime DT framework offers an integrated, real-
time coordination environment between the shipboard and
port-side energy systems. As shown in Fig. 3, the port and
vessel are modeled not as independent entities, but as
interdependent nodes within a unified cyber-physical energy
network. At the center of this configuration is the EMS, which
links distributed physical assets to virtual representations and
data-driven decision making processes.

A key advancement of the DT-based approach over
traditional SCADA lies in its capacity for continuous
synchronization and reconfiguration. SCADA systems
typically rely on fixed rules and time-based schedules and lack
responsiveness to dynamic events such as unscheduled vessel
arrivals, renewable generation variability, or equipment
degradation. In contrast, the DT framework enables
continuous real-time feedback loops, in which sensor-derived
data and forecast models continuously influence operational
strategies. For example, a hybrid tugboat transmitting
propulsion torque, battery SoC, and auxiliary power demand
in real time allows the EMS to adjust cold ironing schedules
or redistribute the DER output based on actual vessel
readiness and energy availability.

The EMS does not only aggregate information; it also acts
as a coordination and optimization layer that interprets fused
data streams from the DTs, translates them into actionable
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optimization.

insights, and issues control commands that shape microgrid
behavior.

It synthesizes environmental inputs (e.g., weather and sea
conditions), infrastructure states (e.g., PV output, grid voltage,
and OPS load), and vessel-specific forecasts (e.g., departure
and auxiliary energy consumption trends) to prioritize energy
flows and minimize differences between competing loads.

For instance, if a cruise vessel is expected to experience a
surge in energy demand during passenger boarding while solar
output declines, the EMS may trigger controlled OPS battery
discharge while deferring less urgent charging for a departing

tugboat.
This dynamic interplay between the port and ship twins is
maintained through shared time horizons, scenario

coordination, and bidirectional communications. The port DT
provides the shipboard twin with up-to-date berth energy
availability and DER constraints, whereas the shipboard twin
sends forward-looking demand forecasts, enabling the EMS to
execute joint optimization. Consequently, the charging
profiles, dispatch schedules, and maintenance events are co-
optimized across the system.

The coordination mechanism within the EMS is based on
decision models that leverage both physical- and system-level
simulations. Physical models summarize component-level
behavior (e.g., BESS degradation curves and engine thermal
dynamics), whereas system models predict aggregate effects
(e.g., port load curves and grid stability margins). Decision
logic may include model predictive control, heuristic
optimization, or multi-objective solvers depending on the
application. These models are continuously updated using DT
data that combine real-time telemetry with historical baselines
and simulation inputs.

By treating ship and port operations as functionally
coupled domains, this DT framework unlocks flexibility,
reliability, and decarbonization potential that are not
achievable with siloed energy control. Its layered design
allows for the secure integration of predictive analytics,
adaptive control, and scenario-driven planning, thereby laying
the groundwork for zero-emission maritime operations.

IV. TECHNICAL CHALLENGES

Implementing DTs in maritime microgrids remains
constrained both by the reliability of sensor telemetry and the
need for minimal latency in real-world port conditions.
Continuous exposure to salt spray, humidity, vibration, and
thermal drift degrades sensor fidelity and can disrupt critical
data streams. Such interruptions not only impair real-time
forecasting and scheduling but also introduce instability into
predictive energy dispatch if not promptly addressed.
Advanced estimation strategies such as adaptive Kalman
filtering and robust observers help reconstruct missing signals;
however, they remain sensitive to sensor drift and long-term
degradation without redundant sensing or self-diagnosing
edge architectures. Maritime systems often lack physical
redundancy or rapid calibration cycles, particularly during
peak vessel traffic, further amplifying operational
vulnerability.

Cyber-physical security presents a growing threat to
shipboard DT ecosystems, where continuous multi-protocol
data exchange spans both operational technology and IT
domains. Lightweight telemetry protocols like MQTT and
maritime standards like NMEA 2000 lack native encryption,
making spoofing, packet manipulation, and time-delay attacks



feasible even under Ilocalized network access. Such
disruptions can cause the EMS to initiate a grid-unstable
dispatch or unscheduled cold ironing.

Finally, achieving computational scalability and semantic
interoperability remains a core barrier to deploying real-time
DT coordination across ship and port domains. High-fidelity
simulations such as propulsion response modeling, transient
grid stability analysis, and battery health prediction are often
infeasible to execute at the edge without reduction techniques.
Emerging approaches such as physics-informed neural
networks and dynamic surrogate models demonstrate strong
potential [22], but they demand extensive, high-quality
training datasets and thorough validation within maritime
operational contexts. Simultaneously, many ship and port
control systems operate on proprietary platforms with
incompatible data schemas and communication protocols.

V. CONCLUSION

This paper presents a modular DT architecture for
maritime microgrids, enabling real-time synchronization
between shipboard and port-side systems under the
supervision of a centralized EMS. The proposed framework
adopts a structured five-layer hierarchy to facilitate predictive
load forecasting, optimal dispatch of DERs, and coordinated
energy exchange. Use cases such as SoC-aware hybrid
tugboat charging and adaptive cold ironing scheduling
highlight the system’s capability to improve flexibility,
operational continuity, and emission mitigation across
dynamic port environments.

However, several technical barriers remain to be resolved.
These include sensor degradation under harsh maritime
conditions, cybersecurity risks due to continuous data
exchange, computational limitations for real-time DT
execution, and lack of interoperability with legacy
infrastructure. Overcoming these challenges is essential to
enable scalable, robust, and secure DT deployment in
operational port settings.

Future research will focus on the development of
lightweight modeling techniques suitable for embedded and
edge-level  deployment, secure and interoperable
communication protocols tailored for maritime microgrids,
and EMS coordination strategies leveraging ML-based
forecasting and decision support. Additional efforts will
explore lifecycle assessment optimization and validation
across multi-terminal port infrastructures to facilitate the
transition toward fully digitalized and decarbonized maritime
ecosystems.
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