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Abstract—The transition toward intelligent and sustainable 

port operations requires advanced tools to manage the 

complexity of maritime microgrids. These systems must enable 

real-time coordination between hybrid vessels and port-side 

infrastructure while adapting to variable renewable generation, 

uncertain berthing schedules, and mission-critical loads. This 

paper presents a focused review of digital twin (DT) technologies 

as a foundation for data-driven predictive control, diagnostics, 

and energy optimization in maritime environments. Key 

architectural elements are analyzed, including multi-source 

sensing, data modeling, forecasting, and secure communication. 

Representative DT applications such as cold ironing scheduling, 

DER coordination, propulsion monitoring, and AIS-based 

demand prediction are discussed. A unified framework is 

proposed to illustrate how a centralized Energy Management 

System (EMS) integrates port and shipboard DTs, enabling 

dynamic interaction, load forecasting, and synchronized 

control. The paper also identifies major challenges and research 

directions to support scalable, secure, and low-emission digital 

twin deployments for resilient port electrification. 

Keywords—Digital Twin, Energy Management System, 

Maritime Microgrids, Port Electrification, Ship–Port 
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I. INTRODUCTION 

Decarbonization of maritime infrastructure has become a 
strategic priority in global efforts to reduce greenhouse gas 
emissions from the transportation sector. With increasing 
regulatory mandates and sustainability targets set by the 
International Maritime Organization (IMO) and European 
Union, ports are transitioning toward low-emission and fully 
electrified operational models [1]. One of the most promising 
enablers of this transformation is the maritime microgrid, an 
autonomous energy system that integrates renewable 
generation, energy storage, and smart control infrastructure 
for port-side and ship-side operations, transitioning ports to 
energy hubs [2]. Several studies have shown that microgrids 
embedded with photovoltaic (PV) panels, battery energy 
storage systems (BESS), and cold ironing stations can reduce 
emissions by up to 40% in medium-scale ports while 
improving operational flexibility [3]. 

Despite these benefits, the effective management of 
maritime microgrids remains technically challenging. Port 
environments are inherently dynamic and are characterized by 
variable berthing schedules, irregular load profiles, uncertain 

renewable outputs, and mobile energy demands from hybrid 
or electric vessels. These conditions result in high variability 
in the load behavior and often lead to mismatches between 
energy supply and demand. In particular, mission-critical 
systems such as quay cranes, reefer containers, propulsion 
drives, and cold ironing terminals require uninterrupted 
power, involving precise coordination across ship–port 
interfaces. The existing Supervisory Control and Data 
Acquisition (SCADA) and Energy Management Systems 
(EMS) in ports are typically rule-based and with predefined 
responses, which limit their ability to model uncertainty, 
anticipate failures, or optimize dispatch under fast-changing 
conditions. As a result, renewable generation assets are often 
underutilized, and load prioritization becomes reactive rather 
than predictive [4],[5].  

Digital twins (DTs)  offer a compelling solution to these 
limitations. A DT is not merely a static model, but its a 
dynamic, continuously updated, representation of a physical 
asset or system that enables real-time monitoring, simulation, 
and optimization. Originally conceived for aerospace systems 
to monitor and simulate mission-critical components in real 
time [6], DTs have since gained adoption in power systems 
[7],industrial automation [8] and transportation sectors due to 
their ability to synchronize virtual models with physical 
systems. For instance, in power systems, DTs have been 
successfully used for transformer health diagnostics, 
distributed energy resources (DER) scheduling under 
uncertainty, and grid topology identification and monitoring 
[9],[10]. As demonstrated in [11], a machine learning-
enhanced digital twin was used to forecast building-level 
demand in a campus microgrid, showing robust performance 
under volatile load conditions. In [12], a physics-informed 
digital twin was developed to model battery degradation, 
supporting predictive dispatch strategies aimed at improving 
reliability and extending asset lifespan. 

Nevertheless, the application of DTs in maritime 
microgrids remains unexplored. Although prior studies have 
utilized Automatic Identification System (AIS) data to model 
ship-to-shore energy interactions and forecast berthing 
schedules [13], most lack integration with real-time control 
mechanisms, multi-scenario simulation environments, and 
closed-loop feedback architectures essential for coordinated 
energy dispatch in maritime microgrids. 

The authors in [14] have developed co-simulation 
platforms integrating ship propulsion models with port-side 
energy systems, while Micallef et al. [15] developed a 
framework for forecasting electricity demand in cruise port 
microgrids using advanced machine learning models. 
However, these approaches often lack validation using real-
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time data streams or fail to incorporate synchronization 
mechanisms necessary for dynamic maritime operations. 
Unlike stationary terrestrial microgrids, maritime systems 
require DTs capable of adaptive modeling that responds to 
both spatial and temporal variability, particularly when 
coordinating distributed energy resources with shipboard 
systems. 

Moreover, while some progress has been made in 
developing DT architectures, an integrated framework that 
synchronizes shipboard and port-side DTs within a real-time 
EMS remains underexplored. Existing modular DT platforms 
designed for electric vehicle infrastructure or isolated 
microgrids have shown promising results [16], yet their 
application to maritime systems is constrained by operational 
diverse operations, intermittent connectivity, and 
cybersecurity risks. As seaports evolve into multi-functional 
energy hubs catering to both stationary infrastructure and 
mobile assets, the ability to simulate, coordinate, and control 
hybrid systems in real time is increasingly recognized as a 
critical enabler for enhancing resilience and reducing 
emissions. 

To address these gaps, this paper provides a targeted 
review and conceptual framework for the deployment of 
digital twins in maritime microgrids.  

The remainder of this paper is organized as follows. 
Section II introduces the digital twin architecture for maritime 
microgrids, detailing port-side, shipboard, and logistics DT 

domains along with the communication and cybersecurity 
layer. Section III presents a layered data flow hierarchy that 
supports predictive modeling, control, and cyber-physical 
coordination. Section IV outlines the unified maritime DT 
framework centered around the EMS, enabling real-time ship–
port synchronization and optimization. Section V discusses 
key technical challenges, including sensors’ reliability, 
cybersecurity, and computational scalability. Section VI 
concludes the paper by summarizing insights and highlighting 
future research directions for secure, interoperable, and 
scalable DT deployment in maritime microgrids. 

II. MARITIME TWIN ARCHITECTURE 
DT architectures play a transformative role in maritime 

microgrids by enabling synchronized high-resolution virtual 
models of complex physical systems. These architectures 
support continuous simulations, forecasting, and adaptive 
control under various operational and environmental 
conditions. Unlike conventional SCADA-based systems, DTs 
facilitate data-driven coordination of DERs, hybrid propulsion 
systems, and critical port loads, such as cranes, reefer 
containers, and cold ironing stations [17].  

A. Digital Twin Architecture for Maritime Microgrids 

Fig. 1 presents a modular architecture for maritime 
microgrids centered around a centralized EMS, which 
integrates interoperable DT domains: port-side DT, shipboard 

 
Fig. 1 Conceptual overview of a digital twin in a maritime microgrid. 



 

 

DT, and logistics DT. These domains are digitally coupled to 
enable synchronized control, real-time diagnostics, and 
predictive optimization of energy flows between the port 
infrastructure and docked vessels. 

Port-side DT focuses on static infrastructure within the 
harbour, capturing DERs through a dedicated energy network 
DT. This subdomain monitors the PV generation, battery 
energy storage systems (BESS), cold ironing systems, and 
grid interfaces. Real-time and historical data such as 
irradiance levels, battery state-of-charge (SoC), grid voltage 
fluctuations, and DER availability are utilized for renewable 
forecasting, DER optimization, load scheduling, and 
contingency-based scenario simulations. 

The shipboard DT models onboard systems, including 
hybrid propulsion modules, energy storage units, and 
auxiliary electrical loads. It integrates vessel/fleet telematics, 
combining onboard diagnostics such as propulsion torque, 
SoC, fuel consumption, and exhaust temperature to support 
predictive maintenance, dynamic power allocation, and 
coordinated onshore power supply (OPS). Diagnostic outputs 
such as the estimated remaining battery life and real-time 
power profiles are relayed to the EMS for optimal resource 
dispatch during the berthing, loitering, and departure phases. 

The logistics DT serves as a coordination layer between 
vessel traffic, terminal operations, and energy dispatch. This 
is divided into two operational sub-domains. The cargo 
terminal DT manages cargo throughput monitoring, berth 
allocation, turnaround scheduling, reefer container tracking, 
and onshore power-sharing. The cruise terminal DT captures 
the dynamics of passenger-centric activities, including 
occupancy forecasting, embarkation/disembarkation 
scheduling, terminal power demand estimation, and lighting 
loads. These models are essential for managing intermittent 
but high-intensity demand from cruise vessels, which differs 
significantly from freight ship operations. 

All DTs communicate through a communication and 
cybersecurity layer, which ensures secure and standardized 
real-time data exchange across physical and digital domains. 
Lightweight telemetry data from distributed sensors (e.g., 
temperature readings from PV panels or occupancy levels at 
terminals) are transmitted using MQTT [18], while critical 
grid control signals are exchanged through the IEC 61850 
protocol. Embedded cybersecurity mechanisms such as 
encryption [19], authentication, and gateway isolation are 
implemented to protect against spoofing, intrusion, and 
unauthorized command injection, which are critical in 
maritime operational contexts. 

This integrated framework connects the physical port 
infrastructure and physical ship infrastructure, which serve as 
the source of real-world telemetry and execution endpoints for 
EMS-issued commands. Examples of physical telemetry 
include the hybrid tugboat engine RPM, BESS voltage levels, 
cold ironing load transfer, and occupancy sensor data. The 
EMS uses these data to issue control commands, such as 
initiating battery charging, adjusting the PV inverter output, 
or redistributing the berth power allocation, thereby enabling 
a closed-loop control strategy. 

Through this hierarchical, multidomain architecture, the 
EMS synthesizes digital forecasts, operational priorities, and 
real-time system states to coordinate load balancing, and 
energy resilience across the entire maritime microgrid. This 
configuration supports both cargo and cruise operations and 
lays the foundation for decarbonized intelligent port 
ecosystems. 

B. Data Flow Hierarchy for Maritime Microgrid Digital 

Twins 

Fig. 2 illustrates a five-layer DT architecture that governs 
data flow and operational synchronization within a maritime 
microgrid environment [20]. This structure facilitates 
predictive modeling, supervisory control, and cyber-physical 
coordination across both the port infrastructure and shipboard 
energy systems. The vertical alignment of the layers, from 
physical assets to user-facing applications, ensures continuous 
feedback loops for real-time decision-making. Each layer 
processes or routes data, generating outputs that flow upwards 
for analysis and downward for control. The hybrid tugboat, 
considered as a representative asset, helps ground this 
architecture, as it functions as both a generator and consumer 
of energy, interacting with the port’s microgrid to request 
power (via the OPS) or providing telemetry to forecast 
propulsion needs. Its participation exemplifies how physical 
devices are digitized and managed within this DT-based 
control framework. 

1) Physical Layer 
The physical layer comprises all tangible maritime assets 

that generate, store, or consume energy within the port 
ecosystem. These include hybrid tugboats, BESS, PV arrays, 
wind turbines, cold ironing terminals, and grid interface 
hardware, and other marine vessels, etc. Each system is 
equipped with sensors that measure real-time parameters, such 
as battery SoC, propulsion torque, fuel flow, voltage levels, 
PV irradiance, wind speed, and shore-side power loads. For 
instance, a hybrid tugboat batteries system may report SoC 
values as it approaches the port, enabling the system to prepare 
a cold ironing berth with an adequate DER supply. These raw 
sensor data streams are routed into the data infrastructure for 
preprocessing and interpretation. 

2) Data Layer 
Sensor telemetry is first transmitted to the data layer, 

where the raw values are filtered, synchronized, and integrated 
with historical and simulated datasets. This layer performs 
essential preprocessing, such as timestamp alignment, noise 
filtering, and normalization. The resulting fusion dataset 
supports both short- and long-term degradation analyses. For 
example, the battery temperature profiles from the tugboat can 
be merged with the historical discharge curves and ambient 
temperature readings to infer potential thermal aging. 
Preprocessed outputs such as normalized voltage datasets or 
aggregated load demands are passed to the model layer for 
high-level forecasting and diagnostic analytics. 

3) Model Layer 
The model layer forms the core analytical engine of the 

digital twin framework. It comprises three subcomponents: 
physical models, data-driven system models, and a decision 
model. Physical models replicate deterministic behavior, such 
as the DC-DC converter efficiency or cold ironing cable 
losses. System models include machine learning approaches 
to forecast terminal energy consumption based on AIS 
schedules and weather inputs, as well as Kalman filters for 
real-time SoC estimation in shipboard batteries using 
measured voltage and current data [21].  

The decision model uses the outputs from these analytical 
engines to generate optimized schedules, battery management 
strategies, and DER prioritization plans. For instance, based 
on the predicted DER availability and ship demand, the model 
might determine whether the tugboat should be connected 
immediately or delayed until the PV output increases. 

 



 

 

 
4) Service Layer 
The service layer operationalizes insights from the model 

layer into specific system actions. This includes automated 
power dispatch, cold ironing activation, battery charge 
scheduling, and fault response strategies. For instance, if the 
model layer forecasts a potential SoC drop during a tugboat’s 
approach, the service layer can initiate prioritised battery 
charging using renewable sources such as wind or solar 
power, or shedding of nonessential terminal loads. Risk 
metrics, emissions thresholds, and grid balancing objectives 
are also processed to enable dynamic system adjustment. 
These services maintain bidirectional links with the 
application layer (for operator feedback) and model layer (for 
continuous optimization based on the live system response). 

5) Application Layer 
At the top of the architecture, the application layer 

provides the human-machine interface and external system 
coordination functions. This includes EMS dashboards, 
SCADA portals, and analytics panels displaying the system 
KPIs, forecasts, etc. Operators interact with live energy flow 
maps, historical efficiency curves, and predictive maintenance 
alerts, and may issue direct commands such as initiate tugboat 
charging, reduce BESS discharge, or allocate cold ironing 
power for cruise terminal. The application layer also links 
stakeholders such as national grid control centers and port 
logistics systems by transmitting forecasted DER output, berth 
schedules, or energy flexibility bids. These interactions close 
the loop, with top-down commands flowing through the 

service and model layers to reconfigure operations at the 
physical level. 

III. MARITIME DIGITAL TWIN FRAMEWORK 

The maritime DT framework offers an integrated, real-
time coordination environment between the shipboard and 
port-side energy systems. As shown in Fig. 3, the port and 
vessel are modeled not as independent entities, but as 
interdependent nodes within a unified cyber-physical energy 
network. At the center of this configuration is the EMS, which 
links distributed physical assets to virtual representations and 
data-driven decision making processes. 

A key advancement of the DT-based approach over 
traditional SCADA lies in its capacity for continuous 
synchronization and reconfiguration. SCADA systems 
typically rely on fixed rules and time-based schedules and lack 
responsiveness to dynamic events such as unscheduled vessel 
arrivals, renewable generation variability, or equipment 
degradation. In contrast, the DT framework enables 
continuous real-time feedback loops, in which sensor-derived 
data and forecast models continuously influence operational 
strategies. For example, a hybrid tugboat transmitting 
propulsion torque, battery SoC, and auxiliary power demand 
in real time allows the EMS to adjust cold ironing schedules 
or redistribute the DER output based on actual vessel 
readiness and energy availability. 

The EMS does not only aggregate information; it also acts 
as a coordination and optimization layer that interprets fused 
data streams from the DTs, translates them into actionable 

 
Fig. 2 Layered data flow architecture for the maritime microgrid digital twin. 



 

 

insights, and issues control commands that shape microgrid 
behavior.  

It synthesizes environmental inputs (e.g., weather and sea 
conditions), infrastructure states (e.g., PV output, grid voltage, 
and OPS load), and vessel-specific forecasts (e.g., departure 
and auxiliary energy consumption trends) to prioritize energy 
flows and minimize differences between competing loads.  

For instance, if a cruise vessel is expected to experience a 
surge in energy demand during passenger boarding while solar 
output declines, the EMS may trigger controlled OPS battery 
discharge while deferring less urgent charging for a departing 
tugboat. 

This dynamic interplay between the port and ship twins is 
maintained through shared time horizons, scenario 
coordination, and bidirectional communications. The port DT 
provides the shipboard twin with up-to-date berth energy 
availability and DER constraints, whereas the shipboard twin 
sends forward-looking demand forecasts, enabling the EMS to 
execute joint optimization. Consequently, the charging 
profiles, dispatch schedules, and maintenance events are co-
optimized across the system. 

The coordination mechanism within the EMS is based on 
decision models that leverage both physical- and system-level 
simulations. Physical models summarize component-level 
behavior (e.g., BESS degradation curves and engine thermal 
dynamics), whereas system models predict aggregate effects 
(e.g., port load curves and grid stability margins). Decision 
logic may include model predictive control, heuristic 
optimization, or multi-objective solvers depending on the 
application. These models are continuously updated using DT 
data that combine real-time telemetry with historical baselines 
and simulation inputs. 

By treating ship and port operations as functionally 
coupled domains, this DT framework unlocks flexibility, 
reliability, and decarbonization potential that are not 
achievable with siloed energy control. Its layered design 
allows for the secure integration of predictive analytics, 
adaptive control, and scenario-driven planning, thereby laying 
the groundwork for zero-emission maritime operations. 

 

IV. TECHNICAL CHALLENGES  

Implementing DTs in maritime microgrids remains 
constrained both by the reliability of sensor telemetry and the 
need for minimal latency in real-world port conditions. 
Continuous exposure to salt spray, humidity, vibration, and 
thermal drift degrades sensor fidelity and can disrupt critical 
data streams. Such interruptions not only impair real-time 
forecasting and scheduling but also introduce instability into 
predictive energy dispatch if not promptly addressed. 
Advanced estimation strategies such as adaptive Kalman 
filtering and robust observers help reconstruct missing signals; 
however, they remain sensitive to sensor drift and long-term 
degradation without redundant sensing or self-diagnosing 
edge architectures. Maritime systems often lack physical 
redundancy or rapid calibration cycles, particularly during 
peak vessel traffic, further amplifying operational 
vulnerability. 

Cyber-physical security presents a growing threat to 
shipboard DT ecosystems, where continuous multi-protocol 
data exchange spans both operational technology and IT 
domains. Lightweight telemetry protocols like MQTT and 
maritime standards like NMEA 2000 lack native encryption, 
making spoofing, packet manipulation, and time-delay attacks 

Physical 
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Fig. 3 Unified digital twin framework linking ship and port systems to EMS for real-time maritime microgrid coordination and 

optimization. 



 

 

feasible even under localized network access. Such 
disruptions can cause the EMS to initiate a grid-unstable 
dispatch or unscheduled cold ironing.  

Finally, achieving computational scalability and semantic 
interoperability remains a core barrier to deploying real-time 
DT coordination across ship and port domains. High-fidelity 
simulations such as propulsion response modeling, transient 
grid stability analysis, and battery health prediction are often 
infeasible to execute at the edge without reduction techniques. 
Emerging approaches such as physics-informed neural 
networks and dynamic surrogate models demonstrate strong 
potential [22], but they demand extensive, high-quality 
training datasets and thorough validation within maritime 
operational contexts. Simultaneously, many ship and port 
control systems operate on proprietary platforms with 
incompatible data schemas and communication protocols. 

V. CONCLUSION 

This paper presents a modular DT architecture for 
maritime microgrids, enabling real-time synchronization 
between shipboard and port-side systems under the 
supervision of a centralized EMS. The proposed framework 
adopts a structured five-layer hierarchy to facilitate predictive 
load forecasting, optimal dispatch of DERs, and coordinated 
energy exchange. Use cases such as SoC-aware hybrid 
tugboat charging and adaptive cold ironing scheduling 
highlight the system’s capability to improve flexibility, 
operational continuity, and emission mitigation across 
dynamic port environments. 

However, several technical barriers remain to be resolved. 
These include sensor degradation under harsh maritime 
conditions, cybersecurity risks due to continuous data 
exchange, computational limitations for real-time DT 
execution, and lack of interoperability with legacy 
infrastructure. Overcoming these challenges is essential to 
enable scalable, robust, and secure DT deployment in 
operational port settings. 

Future research will focus on the development of 
lightweight modeling techniques suitable for embedded and 
edge-level deployment, secure and interoperable 
communication protocols tailored for maritime microgrids, 
and EMS coordination strategies leveraging ML-based 
forecasting and decision support. Additional efforts will 
explore lifecycle assessment optimization and validation 
across multi-terminal port infrastructures to facilitate the 
transition toward fully digitalized and decarbonized maritime 
ecosystems. 
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